Nautilus Systems, Inc. logo and menu bar Site Index Home
News Feedback
Button Bar Menu- Choices also at bottom of page About Nautilus Services Partners Case Studies Contact Us

The Data Mining Process

Data Mining is an iterative process that uses a variety of data analysis tools to discover patterns and relationships in data (Herb Edelstein, Two Crows Corporation).

Picture of PrizmData Mining differs from traditional data analysis in that it discovers patterns that were previously overlooked, as opposed to queries or statistical methods which require the analyst to make an assumption.

Data Mining builds models, which are abstractions of reality as shown in the data. Building and validating the models is a process.

As illustrated in Nautilus Systems' diagram of the Data Mining Process below, the Data Mining Process involves a significant amount of time spent in data preparation, as well as model building and validation. Information learned during discovery frequently sends the analyst back to data preparation, or even to clarification of the problem statement.

For a much more in-depth presentation of our data mining approach, please contact us!

Diagram of Nautilus Systems' Data Mining Process
Stage 1. Develop Problem Statement. The problem statement is important. The focus is on immediate tactical business problems with a high potential value for the amount of data mining effort required. In each data mining exploration, the goal is clearly identified.

Stages 2-4. Data Preparation. 50% to 90% of the time is spent preparing the data. Data selection involves identification of internal and external data, such as adding demographic data to customer data. Data cleansing involves identification of metadata: the true definition of each data element, and resolution of inconsistencies, missing values, and data currency issues. Additional data preparation includes activities such as sampling, preprocessing, coding of discrete values, and the like.

Stages 5-7. Data Mining Discovery. Data Mining Discovery may use a variety of techniques, such as traditional statistical analysis, decision trees, neural networks, and visualization techniques. In this stage, we allocate data to testing as well as training datasets, and modeling and testing is iterative. The Data Mining Purpose is to model reality, thus, if the model works, we use it.

Stage 8. Deploy Models. When significant results have been found, the models are incorporated into decision support systems or OLAPs, or even into existing production systems.

[ Data Warehousing | How To Get Started ]
[ Recommended Books ]

[ Home | News | About Nautilus | Case Studies | Partners | Contact Nautilus ]

Copyright © 1996, 1997, 1998 Nautilus Systems, Inc. All Rights Reserved.